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This paper develops a method for discrete computational Fourier analysis of

functions defined on quasicrystals and other almost periodic sets. A key point is

to build the analysis around the emerging theory of quasicrystals and diffraction

in the setting on local hulls and dynamical systems. Numerically computed

approximations arising in this way are built out of the Fourier module of the

quasicrystal in question and approximate their target functions uniformly on the

entire infinite space. The methods are entirely group theoretical, being based on

finite groups and their duals, and they are practical and computable. Examples

of functions based on the standard Fibonacci quasicrystal serve to illustrate the

method (which is applicable to all quasicrystals modeled on the cut-and-project

formalism).

1. Introduction

In this paper we consider the problem of discrete methods for

dealing with functions that are intrinsically almost periodic,

but not actually periodic. Quasicrystals, quasicrystalline

photonic crystals, Faraday-wave experiments and other

physical phenomena arising from the interaction of incom-

mensurate frequencies all display the features of almost

periodicity. As a typical example one may think of a potential

field of a physical quasicrystal. The salient features of quasi-

crystals are highly structured long-range order (represented

by pure point or near pure point diffraction) but no periodic

order. Thus the potential is not a periodic function, but rather

belongs to the domain of almost periodic functions.

Here we put forth a method for finite discrete analysis of

almost periodic functions that has the following main features:

(1) It is entirely based on group-theoretical methods,

primarily finite groups and their duals.

(2) The discretely computed Fourier approximants are

themselves almost periodic and uniformly approximate their

target functions over their entire domains.

(3) The Fourier frequencies involved in the approximation

lie in the module of Fourier frequencies of the target

function.

A standard approach to modeling such a structure is to take

a finite part of it, impose periodic boundary conditions,

rationalize and reduce the object to a periodic approximant,

and then apply usual crystallography. Although this type of

periodization is used routinely and successfully for many

modeling problems in the theory of quasicrystals, it is not

entirely satisfactory. Almost periodic order goes beyond

periodic order in fundamental ways, its essence appearing as

an underlying incommensurability which pervades every part

of the theory. For instance, a key feature of quasicrystals

appears in the Fourier module that parameterizes the Bragg

spectrum and always has rank higher than (typically double)

the dimension of the ambient space of the quasicrystal.

Periodization destroys this and by its nature can only produce

results that can fit data over the finite range specified by the

imposed periodization boundaries, whereas the essence of the

material is that its order is long range. The present paper does

not involve any periodization and avoids these issues.

The theory of almost periodic functions was initiated by

Bohr (1947), on the basis of earlier work on uniform

approximation of functions by trigonometric polynomials by

Bohl (1893). It was greatly extended by the work of Besi-

covitch (1954), Bochner (1927, 1962), Bochner & von

Neumann (1935), Wiener (1926), Weyl (1926–1927) and others

(Burckel, 1970; Levitan & Zhikov, 1982; Amerio & Prouse,

1971). The advent of quasicrystals and aperiodic tilings insti-

gated a revival of the field and led to extensive study of the

cut-and-project formalism and the theory of pure point

diffraction (Meyer, 1972; Moody, 1997; Hof, 1995; Schlott-

mann, 2000), which have become the mainstays of experi-

mentalists and theorists alike. An important component of this

is the use of dynamical systems and dynamical hulls. These are

ideally suited to the phenomenon of almost periodicity, which

appears in the dynamics as recurrence, and provide a natural

setting for the Fourier analysis used in its study.

Although our study is of almost periodic functions, their

importance in the subject of quasicrystals is that they arise

from functions whose behavior is dominated by the local

environment of the quasicrystal in question. The way in which

this happens is mostly taken for granted, but in fact there are

some interesting assumptions involved, and for this reason we

begin by formally defining local functions with respect to a



given point set � in some real space Rd and showing how it is

that they are connected with almost periodic functions.

We can create a dynamical hull (X; �) from �. This is a

compact space that arises from � and its translations, and it

lies at the heart of the Fourier analysis of local functions on �.

One assumes (in many important cases it is forced) a prob-

ability measure � on which Rd acts in a measure-preserving

way. A local function f lifts to some new function F on (X; �),

and this is an L2 function. Now the analysis of f can be related

directly to the analysis of F, and for this we have a powerful

tool in the form of the action of Rd on L2ðX; �Þ, which is

unitary. All of this material is explained in x2.

To go further, we next place ourselves in the situation of the

cut-and-project formalism, which is the standard method of

modeling used in the study of quasicrystals. The set � is now

assumed to be a model set (cut-and-project set). In this setting

the hull (X; �), and more particularly L2ðX; �Þ, can be

described explicitly in terms of a higher-dimensional torus1

(higher-dimensional periodicity!), and it is a straightforward

matter to carry out Fourier analysis of F. It is the restriction of

this Fourier analysis back to f that provides the required

Fourier analysis of f . By its very nature this is almost periodic

and captures the full aperiodic nature of �, including the

correct Fourier module in which physical information actually

appears. This is the content of x3. Readers familiar with the

cut-and-project method who do not wish to go through the

theory of local hulls and local functions may read xx3.1 and 3.4,

and then move on to x4.

This theoretical analysis is based on higher-dimensional

structures that are not explicitly computable, as well as the

usual array of countably many Fourier coefficients, each of

which is the outcome of integration. To be a practical tool, the

analysis has to be reduced to finitely many objects that are

explicitly computable entirely in the context of the given

function f . The resulting approximants are trigonometric

polynomials (quasi-periodic functions) whose frequencies

come from the Fourier module of the original function. In x4

we outline the method of discretization, which depends

primarily on the construction of a refinement lattice of the

lattice of the cut-and-project scheme and, along with it, its dual

lattice. Together these produce two finite groups which are in

Z-duality to each other. The selection of data points and

appropriate Fourier frequencies is governed by these two

groups.

This analysis is best illustrated by examples, and for this

purpose we have chosen two local functions based on one of

the famous Fibonacci point sets. This has the advantage of

being straightforward to construct and easy to visualize, while

at the same time containing all the essential features of more

general model sets. x5 prepares the mathematics of the Fibo-

nacci cut-and-project scheme, and x6 shows some explicit

computations for the particular local functions we have

chosen. As is evident from the examples, the main effort

required is in the creation of the data points. Once this is done,

the same set of data points and Fourier frequencies will work

for any almost periodic function arising from the same cut-

and-project scheme.

The results are striking in two ways. First of all, the

approximating functions are remarkably good, given the

amount of data from which they are produced. Secondly, the

approximating functions are not just local approximations,

they are also global approximations, in the sense that they

provide finite Fourier series that approximate f throughout its

entire domain. Of course this was to be expected, but it is

impressive to see it in action.

The numerical methods we introduce here are designed to

be efficient and, of course, to utilize the inherent almost

periodicity. In the development of the theory we provide error

estimates that can be worked out specifically in the cases of

interest. We note that the primary weakness in the error

estimates is not one that is due to the aperiodic nature of the

problem but one that always appears in Fourier analysis,

namely how well can one approximate a function if one uses

only finitely many of its Fourier coefficients.

2. Continuous functions on aperiodic point sets

2.1. Local hulls

For r> 0, let DrðR
d
Þ be all point sets � � Rd for which the

distance jx� yj � r for all x; y 2 �. This means that Dr

consists of all discrete point sets with minimal separation � r

between their points.

The local topology on DrðR
d
Þ can be intuitively introduced

as follows. Two sets �1 and �2 of DrðR
d
Þ are ‘close’ if, for

some large R and some small �, one has

�1 \ BR � �2 þ B�;

�2 \ BR � �1 þ B�;
ð1Þ

where BR (B�) is ball of radius R (�) around 0. Thus for each

point of �1 within the ball BR, there is a point of �2 within a

distance � of that point, and vice versa. Pairs ð�1;�2Þ satis-

fying equation (1) are called (R; �)-close (Fig. 1).

The local topology is actually a metric topology, although

we make no use of this fact here.

Acta Cryst. (2008). A64, 654–669 R.V. Moody et al. � Almost periodic expansions 655

research papers

Figure 1
Two sets �1 and �2 of DrðR

d
Þ that are close.1 More generally a compact Abelian group.



Definition 1. For � 2 DrðR
d
Þ the local hull of � is

Xð�Þ ¼ ft þ� : t 2 Rd
g � DrðR

d
Þ; ð2Þ

i.e. take all translates of � and take their closure in the local

topology.

Proposition 2.1 (Radin & Wolf, 1992). The translation action

of Rd on � lifts to a translation action on Xð�Þ. The local hull

Xð�Þ is compact and the Rd-action on it is continuous.

Example 1. Let � be the lattice Zd in Rd. Then Xð�Þ ¼ Rd=Zd

is the d-torus (with its usual topology). Intuitively we translate

the lattice around with Rd. However, translation by an

element of Zd leaves � invariant, so Rd=Zd parameterizes all

distinct positions of � under translation.

Example 2. Let � be any Penrose tiling. Then Xð�Þ is the set

of all Penrose tilings that are locally indistinguishable from

some translate of �. Xð�Þ contains considerably more than

just the translations of �. In fact Xð�Þ consists of all Penrose

tilings based on the same pair of Penrose rhombs and the same

orientations as appear in �.

Generally one may think of Xð�Þ as some sort of local

indistinguishability class of �.

2.2. Continuous functions on X(K)

We assume that � � DrðR
d
Þ and Xð�Þ are as in x2.1.

Consider a function

F : Xð�Þ�!C: ð3Þ

We can define from it a function

f : Rd
�!C

by

f ðtÞ ¼ Fðt þ�Þ: ð4Þ

If F is continuous then we note that for all t1; t2 2 R
d

t1 þ�; t2 þ� are close

¼) Fðt1 þ�Þ;Fðt2 þ�Þ are close

¼) f ðt1Þ; f ðt2Þ are close:

Thus continuity of F implies continuity of f , and we see that f

is local, or almost periodic, with respect to � in the following

sense:

Definition 2. A function f : Rd
�!C is called local with respect

to a set � 2 DrðR
d
Þ, or �-local, if for all �0> 0 there exist R

and � so that whenever t1; t2 2 R
d satisfy that t1 þ� and

t2 þ� are ðR; �Þ-close then

jf ðt1Þ � f ðt2Þj<�
0:

The intuitive meaning of this is that f has the very natural

property, at least from the perspective of physical systems, that

it looks very much the same at places where the local envir-

onment looks the same. Local functions are easily seen to be

continuous on Rd.

Using locality, we can go in the opposite direction. Let

� 2 DrðR
d
Þ and let f : Rd

! C be local with respect to �.

Define

F : ft þ� : t 2 Rd
g �!C

[so that F is a function on a part of DrðR
d
Þ] by

Fðt þ�Þ ¼ f ðtÞ:

Then F is continuous on ft þ� : t 2 Rd
g with respect to the

local topology. In fact it is uniformly continuous. The reason

for this is that the continuity condition which defines the local-

ness of f is based on the uniformity [i.e. the notion of ðR; �Þ-
closeness] defining the local topology of ft þ� : t 2 Rd

g.

It follows that F lifts uniquely to a continuous function

[equation (3)] on the local hull Xð�Þ.

Proposition 2.2. For each local function f with respect to �
there is a unique continuous function [equation (3)] on the

local hull, whose restriction to the orbit of � is f . Every

continuous function on the local hull of � arises in this way.

Thus we see that a locality with respect to � and the exis-

tence and continuity of an extension function on Xð�Þ amount

to the same thing.

In the situation that Xð�Þ is equipped with an Rd-invariant

probability measure � [i.e. a positive Borel measure � with

�ðt þ AÞ ¼ �ðAÞ for all Borel sets and with �
�
Xð�Þ

�
¼ 1],

the action of Rd on Xð�Þ leads to unitary action T of Rd on

L2
�
Xð�Þ; �

�
. Namely for all F 2 L2

�
Xð�Þ; �

�
and for all

t 2 Rd, TtF is the function defined by Tt Fð�Þ ¼ Fð�t þ �Þ,
and with

hF j Gi :¼
R

Xð�Þ

FG d�

we have

hTt F j Tt G i ¼ hF j G i:

In principle the spectral theory of L2
�
Xð�Þ; �

�
should

allow one to analyze �-local functions f : Rd
! C by

analyzing their corresponding functions F on L2
�
Xð�Þ; �

�
.

For one very important class of subsets � this can actually

be carried out in detail – namely the class of model sets, which

we now introduce.

3. Local functions on model sets

3.1. Cut-and-project schemes, model sets and torus para-
meterization

An important class of point sets � � Rd for which we know

a considerable amount about the corresponding hulls Xð�Þ is

the class of cut-and-project sets, or the model sets as they are

often called (Meyer, 1972; Moody, 1997).
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Consider the cut-and-project scheme

Rd
 �
jj

Rd
� Rd

�!
?
Rd

[

 �
1�1 eLL �!

dense image

ð5Þ

and a window �. Here eLL is a lattice in Rd
� R

d which is

oriented so that the projections into Rd are 1–1 and dense,

respectively.

In equation (5) the left-hand Rd is physical space, the space

in which � is going to lie. The right-hand Rd is internal space,

the one that will be used to control the projection of the latticeeLL into physical space. The image of eLL under projection

into physical space is denoted by L. Since this projection is

1–1, L ’ eLL as groups, so L is a free Abelian group of rank 2d,

i.e. it has a Z-basis of 2d elements. However, it necessarily has

accumulation points, and the typical situation is that L is dense

in physical space.

It is convenient to use notation like ~xx; x; x0 for the elements

of eLL and their respective left and right projections. Then

~xx ¼ ðx; x0Þ where x runs through L. This implies the existence

of the mapping ð � Þ0 : L! L0 defined by x 7! x0, which passes

from physical to internal space.

Note that this mapping ð � Þ0, as given, is only defined on L. It

cannot be extended in any canonical way to a mapping

Rd
! Rd. However it does extend canonically to the rational

spans of the objects in question, and we shall make use of this

later.

We choose a subset � in internal space. This window is

assumed to be compact, to be equal to the closure of its

interior and to have a boundary of measure 0. Using it we

define

� ¼ �ð�Þ ¼ fx : ~xx 2 eLL; x0 2 �g: ð6Þ

Sets of the form t þ�ð�Þ, t 2 Rd, are called cut-and-project

sets or model sets.2 In particular, for each ðx; yÞ 2 Rd
� Rd we

may define

�ðx;yÞ ¼ xþ�ð�yþ�Þ: ð7Þ

If ðx; yÞ � ðx0; y0ÞmodeLL, then xþ�ð�yþ�Þ ¼ x0 þ

�ð�y0 þ�Þ, as can be verified directly from the definitions.

Thus these model sets are parameterized by the torus of

dimension 2d,

ðR
d
� R

d
Þ=eLL ’ ðR=ZÞd ¼: T: ð8Þ

We note, though, that the parameterization need not neces-

sarily be 1–1, i.e. in general, �ðx;yÞ ¼ �ðx0;y0Þ 6) ðx; yÞ ¼

ðx0; y0ÞmodeLL. For simplicity, we shall usually write ðx; yÞL for

the congruence class ðx; yÞmodeLL:
There is a natural measure, the Haar measure, �T on T. This

measure is the obvious ‘area’ measure in the case of T2 and

‘length’ measure for T1. It is invariant under the Rd-action: Rd

acts on R2d=eLL by

t þ ðx; yÞL ¼ ðt þ x; yÞL: ð9Þ

Of particular importance to us is natural embedding (see

Fig. 2),

Rd
�!T; t 7! ðt; 0ÞL; ð10Þ

which lies behind the connection between almost periodicity

in physical space and periodicity in some higher-dimensional

setting. The image of this mapping is easily established to be

dense in T.

Now start with � ¼ �ð0;0Þ ¼ �ð�Þ and translate it by

elements t 2 Rd:

t þ�ð�Þ ¼ t þ�ð0þ�Þ ¼ �ðt;0Þ: ð11Þ

Then form the local hull Xð�Þ, the closure of the set of all

translates �ðt;0Þ of � under the local topology [equation (2)].

Proposition 3.1 (Schlottmann, 2000). There is a continuous

mapping,

� : Xð�Þ �!T; ð12Þ

called the torus parameterization, such that

(1) � is onto;

(2) � is 1–1 almost everywhere, seen from the perspective of

the Haar measure on T;

(3) for all t 2 Rd, for all �0 2 Xð�Þ, one has �ðt þ�0Þ ¼
t þ �ð�0Þ;

(4) �ðt þ�Þ ¼ ðt; 0ÞL for all t 2 Rd.

Xð�Þ and T are both compact spaces with natural Rd-

action, and � : Xð�Þ ! T is an onto Rd mapping. However,

Xð�Þ and T are subtly different. Although t þ� 2 Xð�Þ and

t þ� 7!�ðt;0Þ for all t, not every element of Xð�Þ is a �ðx;yÞ
for some (x; y). Rather, when (�yþ @�Þ \ L0 6¼ ; then for all

x 2 Rd there are always �1 6¼ �2 elements of Xð�Þ that are

mapped by � to the same ðx; yÞL. Whenezz ¼ ðz; z0Þ 2 eLL with

z0 2 ð�yþ @�Þ then there will always be �1;�2 2 Xð�Þ with

�
�
Xð�1Þ

�
¼ �

�
Xð�2Þ

�
¼ ðx; yÞL, yet xþ z 2 �1, xþ z =2�2.

In other words, there are ambiguities regarding the lattice

points that project onto the boundary @� of �. An example of

this is shown in the footnote appearing in x5.3. The fact that �
is 1–1 almost everywhere arises from our assumption that the

boundary of � has measure 0.
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Figure 2
A fragment of the orbit of � as seen in the torus parameterization.

2 Model sets can be taken more generally with any locally compact Abelian
group as the internal space.



When we say that � is 1–1 almost everywhere, we mean that

the set A of points � in T, for which there is more than one

point set over �, satisfies �TðAÞ ¼ 0.

There is a unique Rd-invariant ergodic measure � on Xð�Þ
with �

�
Xð�Þ

�
¼ 1. In fact � relates � and �:

�ð�Þ ¼ �; ð13Þ

or more specifically, �ðAÞ ¼ �ð��1AÞ for all measurable

subsets A of T. With � in hand, we can introduce the

space L2
�
Xð�Þ; �

�
of square-integrable functions on Xð�Þ.

As already pointed out, the natural action of Rd on this is

unitary.

3.2. From hulls to tori

Square-integrable functions on Xð�Þ and square-integrable

functions on T can be identified:

L2
�
Xð�Þ; �

�
’ L2ðT; �Þ: ð14Þ

The isomorphism is easy to understand:

gives us a map

L2ðT; �Þ �!L2
�
Xð�Þ; �

�
:

Since � is almost everywhere 1–1, the map is a bijection.

This allows us to analyze functions on Xð�Þ by treating

them as functions on T. The advantage of this is that functions

in L2ðT; �Þ have Fourier expansions

eFFðzÞ ¼ P
ekk2eLL� ak expð2�ihekk j ziÞ; z 2 T; ak 2 C: ð15Þ

Here h� j �i is the natural dot product on Rd
� Rd

¼ R2d andeLL� is the lattice that is Z-dual to eLL:

ekk 2 eLL� ()hekk jexx i 2 Z for allexx 2 eLL:
Assuming that the dot product is rational valued on eLL, this

new lattice is in the Q span of eLL and its elements ekk have

the same type of decompositionsekk ¼ ðk; k0Þ as elements of eLL.

In particular, for eachekk there is a unique k 2 Rd. We prepare

for the ultimate reduction of everything to the physical space

by using the symbols ak rather than a ~kk for the coefficients of

the Fourier expansion. We shall write L� for the projection ofeLL� on the physical side, so we can just as well write k 2 L� asekk 2 eLL�. We will call L� the dual of L. The mapping

ð�Þ
0 : L� ! R

d here is compatible with that on L; indeed

QL� ¼ QL.

The corresponding functions on Xð�Þ have similar expan-

sions. This works as follows: If F : Xð�Þ �!C corresponds toeFF : T�!C then, for �1 2 Xð�Þ with �ð�1Þ ¼ ðx; yÞL, we

have as L2 functions

Fð�1Þ ¼
eFF�ðx; yÞL

�
¼
P

k2L�
ak exp

�
2�ihekk j ðx; yÞi

�
: ð16Þ

3.3. Local functions on model sets

Let � be a model set arising from the cut-and-project

scheme of equation (5). Let T ¼ T2d
¼ ðR

d
� R

d
Þ=L be the

torus with torus parameterization

� : Xð�Þ �!T:

Then we have the identification [equation (14)] of the corre-

sponding L2 spaces. Each element �0 2 Xð�Þ maps by � to a

point �ð�0Þ in T. We also know �ð�Þ ¼ ð0; 0ÞL and

�ðt þ�Þ ! ðt; 0ÞL, so we know how � works on Rd
þ�.

Suppose f is a local function with respect to the model set

�. From the local function f we have its extension

F 2 L2
�
Xð�Þ; �

�
, which is continuous. Then we obtaineFF 2 L2ðT; �Þ, whereeFF�ðt; 0ÞL
�
¼ eFF��ðt þ�Þ

�
¼ Fðt þ�Þ ¼ f ðtÞ; ð17Þ

and we can writeeFFð�Þ ¼ P
k2L�

ak expð2�ihekk j �iÞ;
where L� is the dual of L.

Definition 3. The Fourier–Bohr expansion of the local function

f is

f ðtÞ ¼ Fðt þ�Þ ¼ eFF�ðt; 0ÞL
�
¼
P

k2L�
ak exp

�
2�ihekk j ðt; 0Þi

�
¼
P

k2L�
ak expð2�ihk j tiÞ: ð18Þ

Our study of almost periodic functions on � becomes the

study of functions on T and their restrictions to the ‘spiral’

orbit Rd
þ� in T given by the embedding [equation (10)], i.e.

restriction to ðRd; 0ÞL, see Fig. 2.

3.4. Fourier coefficients

Let us continue with the situation in x3.3. For all x 2 T,eFFðxÞ ¼ P
k2L�

ak expð2�ihekk j xiÞ; ð19Þ

where

ak ¼
R
T

expð�2�ihekk j xiÞeFFðxÞ d�TðxÞ: ð20Þ

Unfortunately, we do not have total control over eFF. We know

it only on ðRd; 0ÞL. To compute ak from f alone, we use the

Birkhoff ergodic theorem:3 for all continuous functions eGG on

T,
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Z
T

eGGðxÞ d�TðxÞ ¼ lim
R!1

1

vol BR

Z
BR

eGG�ðt; 0ÞL
�

dt: ð21Þ

Thus

ak ¼ lim
R!1

1

vol BR

Z
BR

exp
�
� 2�ihekk j ðt; 0Þi

�eFF �ðt; 0ÞL
�

dt

¼ lim
R!1

1

vol BR

Z
BR

expð�2�ihk j tiÞ f ðtÞ dt: ð22Þ

Here we use F
�
ðt; 0ÞL

�
¼ f ðtÞ andekk ¼ ðk; k0Þ, so

hekk j ðt; 0Þi ¼ hk; ti þ hk0; 0i ¼ hk; ti:

The averaging sequence fBRg that we have employed here

can be replaced by any unbounded ascending sequence fAng,

where An � R
d is compact,

S
An ¼ R

d, and the boundary of

An has measure 0 for all n. In practice one should adapt the

averaging sequence to the problem at hand.

4. Discretization

4.1. Main components

Our objective is to devise a discrete method by which to

estimate the coefficients ak of equation (22) of a local function

f with respect to a model set � ¼ �ð�Þ. This means replacing

the integral by a finite sum of values of the integrand. The

problem is to do this in such a way that it respects the cut-and-

project scheme in which the model set lives, can be guaranteed

to converge in the limit to the required integral, and can be

carried out efficiently from a computational point of view.

There are three components to this:

(i) deciding on a suitable domain of integration (what

should we use for BR?);

(ii) creating the points of evaluation of the integrand,

including how many there should be;

(iii) deciding to which set of Fourier coefficients (which

values of k) we should restrict our attention.

A key feature of discrete methods involving periodic

functions is the use of finite groups arising from refinements of

the period lattice and quotients of its dual lattice (e.g. Moody

& Patera, 2006). We need to translate this concept into the

context of cut-and-project schemes. The set of points on which

the integrand is evaluated is created out of the same cut-and-

project process that creates the original model set. The

ingredients are a choice of a suitable lattice eLLN 	
eLL, which

then gives rise to the finite groupeLLN=eLL. The data points in Rd

at which computations of our functions will be made come by

projection into physical space of a suitable set of coset

representatives of eLLN modulo eLL. The corresponding

frequencies (wavevectors) k are chosen from the dual lattice

L�. The choice of values of k at which we should evaluate the

Fourier coefficients ak come by selecting suitable representa-

tives of eLL� modulo eLL�N. The key point is the duality

h� j �i : eLL�=eLL�N �eLLN=eLL�!ð1=NÞZ=Z:

4.2. Outline of the discretization process

In this section we give more precise details as to how the

goals of x4.1 can be achieved. The process necessarily involves

a number of decisions, which can only be made in the context

of the situation at hand. In xx5 and 6 we shall see how this

looks in particular examples.

It should be noted that, although setting up the computa-

tional details is somewhat involved, these details depend only

on the cut-and-project scheme and the degree of accuracy

required from the computation. Once this is established the

data points and choices of frequencies are already determined,

and they suffice for the Fourier analysis of all functions that

arise out of the same almost periodic family and are algor-

ithmically easy to compute.

We begin with the cut-and-project scheme [equation (5)]

with torus T and note the natural extension of the mapping ð�Þ0

to the rational span of the module L:

We assume that R2d
’ Rd

� Rd is supplied with the standard

dot product (denoted h� j �i), and then define the dual lattice:eLL� ¼ fY 2 Rd
� Rd : hY jexx i 2 Z for allexx 2 eLLg:

TheneLL� is a Z-module of the same rank aseLL, namely 2d. There

is a cut-and-project scheme dual to equation (5) of whicheLL� is

the lattice (Moody, 1997):

Rd
 �
jj

Rd
� Rd

�!
?

Rd

[

L�  �
1�1 eLL� �!

dense image
ðL�Þ0:

ð24Þ

We shall use the same type of notation as in equation (23) for

this scheme too. It arises by taking the Pontryagin duals of all

the groups in equation (23), whereuponeLL� appears as the dual

of the torus T. For more on dual cut-and-project schemes see

Moody (1997).

Dualizing can be considerably simplified if the inner

product on Rd
� Rd is rational valued on the lattice eLL. This

quite often happens in practice. For instance, it occurs in the

Fibonacci example below, where the inner product arises from

the trace form on Q½
ffiffiffi
5
p

. When this arises one can identifyeLL�

as a subset of QeLL and thereby avoid having to find the new ð�Þ0

mapping. However, in the general situation such simplifica-

tions need not exist, and we do not assume them here.

In reading what follows it is good to keep in mind the

equation

expð2�ihekk jess iÞ ¼ expð2�ihk j siÞ expð2�ihk0 j s0iÞ; ð25Þ

which lies at the bottom of the approximation. The discrete

Fourier analysis is accomplished by a dual pair of finite groups

from which ekk andess will come. The actual values of ekk andess
are important only modulo the latticeseLL�N andeLL, respectively,

and this freedom lies at the heart of the process.

The values of s should be in the range A of our integration,

and ideally we would have the corresponding s0 ¼ 0 since theess
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are supposed to be representing points of the physical space

Rd. However, the latter is not possible, so we attempt to

choose the s 2 A along with s0 as small as possible. The

approximation then works by throwing away the term that

involves k0; s0 in equation (25). The set of values of ekk is

constrained primarily by the requirement that the values of jkj

should be small; see the discussion after Step 5 below.

4.3. The six steps

Step 1. Choose a finite subgroup of T of order N. This

appears in the formeLLN=eLL whereeLLN 	
eLL is a lattice refiningeLL.

The number N will determine the number of points of

evaluation in approximating the integrals by sums. We haveeLLN � QeLL, and it has a Z-dual eLL�N � eLL� which is of index N ineLL�.
This affords the natural pairingeLL�=eLL�N �eLLN=eLL�!ð1=NÞZ=Z ð26Þ

induced by h� j �i (and still denoted by h� j �i). Using the ð�Þ0

mappings, we obtain, in the obvious notation, the Z-modules

LN 	 L, L�N � L�, eLLN=eLL ’ LN=L, eLL�=eLL�N ’ eLL=eLLN , and an

induced pairing

h� j �i : L�=L�N � LN=L�!ð1=NÞZ=Z:

Replacing eLL by eLLN, we have the refined cut-and-project

scheme

Rd
 � Rd

� Rd
�! Rd

[

LN  !
1�1 eLLN  ! L0N

ð27Þ

and similarly its dual.

Step 2. Choose a fundamental domain C for eLL. A canonical

choice would be the Voronoi cell of eLL at 0, but any other

choice is allowable. In the examples below we use the paral-

lelogram defined by a pair of basis vectors of eLL. Cover

ðRd; 0Þ � R2d with a set of translatesett þ C of C by elements

of eLL. The projection of these cells into the physical space Rd

covers it, though in general the projectedett þ C have many

overlaps.

Step 3. FormeSS :¼ eLLN \ C. This provides a complete set of

representatives in eLLN for the group eLLN=eLL.

Step 4. Choose a region A which will delimit the range over

which the Fourier coefficients of f will be estimated in the

form

ak ¼ a ~kk ’
1

vol A

Z
A

expð�2�ihk j tiÞ f ðtÞ dt:

These integrals have to be computed for values of k that come

from L�=L�N .

Take as A the image of a finite set of the translates of C

appearing in Step 2, i.e.

A ¼
� S

~tt 2 ~TT

ett þ C
�jj

for some finite subset of eTT elements of eLL. The choice of A is

again determined by the problem at hand.

We need next to determine a set of data points in Rd which

will serve to replace the integrals of Step 4 by finite sums. This

is the purpose of the next step.

As we pointed out above, we are free to translate the

elements ofeSS byeLL as we please, and we wish to do this so that

the projected images are in our region of integration,

A ¼
S

~tt 2 ~TTðett þ CÞ
jj. We also keep in mind that we wish to do

this so as to minimize the size of the corresponding s0.

Step 5. For each ess ¼ ðs; s0Þ 2eSS find a ftðsÞtðsÞ 2 eTT for which

js0 þ tðsÞ0j is minimal. Then the set of data points is

D :¼ fsþ tðsÞ :ess 2eSSg:
At this point, for each k 2 L� we have

ak :¼
1

vol A

X
u2D

expð�2�ihk j uiÞ f ðuÞ

and the resulting approximation of f is

f ðxÞ ’
P

k2K

ak expð2�ihk j xiÞ:

The set K is to run over a complete set of representatives of

L�=L�N . The choice seems free, but one may assume that in

most cases the lower frequencies (smaller jkj) are most

essential in approximating f by using only finitely many of its

frequencies. For this reason we have:

Step 6. Choose k for each class of L�=L�N with jkj taken as

small as possible.

This concludes the broad description of the algorithm.

5. A Fibonacci example

To make all this more concrete we work through the details of

a one-dimensional example, the well known Fibonacci

sequence, where the cut-and-project scheme lives in two

dimensions and the geometry of the data set D and the set of

translates eTT via a refinement lattice and new windows are

easily visualized. This involves first setting up the cut-and-

project scheme in detail (x5.1 and x5.2) and then describing a

Fibonacci point set arising from the standard Fibonacci

substitution in terms of it (x5.3). We then follow steps 1

through 6 of x4.3, which provide the data points and corre-

sponding frequencies that will work for the analysis of any

local function that we may choose. In x6 we apply this infor-

mation to two simple examples of local functions to see how

well the methods actually work.

One of the great virtues of the cut-and-project method is

that it is primarily an algebraic tool and does not require great

geometric insight to use it. Given that for aperiodic structures

in dimension greater than one we are almost always in the

situation of lattices of rank greater than three, and hence are

forced into spaces in dimensions greater than three, this type

of algebraic formalism is of enormous value. However, in the

Fibonacci example, in which everything can be performed in

two dimensions, it is useful to see the underlying geometry

explicitly. Thus we have gone to some effort to show the

geometric meaning of the central feature of the method, that

is, the creation of the data points, and to show what the
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approximations look like and how good they are in compar-

ison with exact computation. In practice all this is unnecessary.

The only part of the algorithm that requires any serious insight

into the geometry (and it is actually trivial in the Fibonacci

example) is the selection of the fundamental domain and the

translates of it that are to be used. It is their projection that

makes the domain in physical space in which the data will

lie.

5.1. The Fibonacci cut-and-project scheme

Let � :¼ 1
2ð1þ

ffiffiffi
5
p
Þ and let Z½�
 ¼ Zþ Z�. Then Z½�
 is the

ring of integers of the field Q½�
 ¼ Q½
ffiffiffi
5
p

 and �2 ¼ � þ 1. Let

ð�Þ
0 on Z½�
 and Q½�
 be the conjugation that interchanges

ffiffiffi
5
p

and �
ffiffiffi
5
p

.

We define

gZ½�
Z½�
 :¼ fðx; x0Þ : x 2 Z½�
g � R� R:

gZ½�
Z½�
 is a lattice in R� R and its natural projections

into R provide the setup for the Fibonacci cut-and-project

scheme:

A natural basis of gZ½�
Z½�
 is fð1; 1Þ, ð�; �0Þg and the standard inner

product on gZ½�
Z½�
 is defined by

ðexx jeyyÞ ¼ ð2x � yÞZ ¼ �xyþ ð�xyÞ
0: ð29Þ

Here the notation ð�ÞZ indicates taking the rational component

a of 2x � y 2 Z½�
 ¼: aþ b�, and

� ¼ ð�
ffiffiffi
5
p
Þ
�1
¼
�
�ð� � �0Þ

��1
¼ ð�2

þ 1Þ�1;

�0 ¼ ð��0
ffiffiffi
5
p
Þ
�1
¼
�
�0ð�0 � �Þ

��1
¼ ð�0 2 þ 1Þ�1: ð30Þ

In particular,

ðe11 je11Þ ¼ �2ð1 � 1Þ�
Z
¼ 2; ðe�� je�� Þ ¼ ð2�2

ÞZ ¼ 2;

ðe11 je�� Þ ¼ ð2�ÞZ ¼ 0:

The geometry of the fundamental cell for the lattice gZ½�
Z½�
 is

illustrated in Fig. 3. Chen et al. (1998) give further details of

the material discussed here.

5.2. The dual lattice

The inner product ð� j �Þ allows us to identify gZ½�
Z½�
� inside the

rational span of gZ½�
Z½�
 and to express h� j �i in terms of ð� j �Þ. The

basis dual to fð1; 1Þ; ð�; �0Þg is given by

e!!1 ¼
1

2
e11 ¼ �1

2
;

1

2

�
; e!!2 ¼

1

2
e�� ¼ ��

2
;
�0

2

�
; ð31Þ

and the dual lattice is

ðgZ½�
Z½�
Þ� ¼ Ze!!1 þ Ze!!2 ¼
1
2
gZ½�
Z½�
: ð32Þ

The elements of ðgZ½�
Z½�
Þ� are always of the formekk ¼ ðk; k0Þ, and

we can write

Z½�
� :¼ fk :ekk ¼ ðk; k0Þ 2 ðgZ½�
Z½�
Þ�g: ð33Þ

Then

ðgZ½�
Z½�
Þ� ¼gZ½�
Z½�
� ¼ fekk : k ¼ ðk; k0Þ 2 Z½�
�g;

and hekk jexx i becomes ðekk jexx Þ, which is more useful notation for

the following.

The 2-torus T of the cut-and-project scheme [equation (28)]

is then

T ¼ ðR� RÞ=gZ½�
Z½�
:

Fourier series on T are expressed in terms of the characters 	 ~kk,

namely

	 ~kkðexx Þ ¼ exp
�
2�iðekk jexx Þ�; where ekk ¼ ðk; k0Þ 2 Ze!!1 þ Ze!!2:

ð34Þ

Here exx can be arbitrary in R� R, but we shall need to

compute only withexx 2 Qe!!1 þQe!!2 for whicheis well defined

[equation (28)]. For these elements ðekk jexx Þ ¼ ð2k � xÞQ.

The product ð� j �Þ extends to R� R, but care has to be

taken. For a typical element ae11þ be��, a; b 2 R of our super-

space R� R the inner product is calculated as�
ðae11þ be�� Þ j ðce11þ de�� Þ� ¼ 2acþ 2bd;

where

ae11þ be�� ¼ að1; 1Þ þ bð�; �0Þ ¼ ðaþ b�; aþ b�0Þ 2 R� R:
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Figure 3
The fundamental cell C of the lattice gZ½�
Z½�
 ¼ Zð1; 1Þ þ Zð�; �0Þ is shown in
terms of the standard coordinate system for R� R. When C is imagined
as a torus by identifying opposite sides and the physical space is wrapped
onto it using these identifications, then the a and b regions shown here
indicate which parts of the physical space are lying in a or b tiles,
respectively.



Consider

ekk ¼ ae!!1 þ be!!2 ¼
a

2
e11þ b

2
e�� ¼ �aþ b�

2
;

aþ b�0

2

�
¼ ðk; k0Þ 2gZ½�
Z½�
�;

where a; b 2 Z. Suppose we want to compute ðekk j ðt; 0ÞÞ, t 2 R.

From

ð1; 0Þ ¼
1

�
ffiffiffi
5
p e11þ 1ffiffiffi

5
p e�� ¼ �e11þ ��e��;

ð0; 1Þ ¼ �2�e11� ��e�� ¼ �0e11þ �0�0e��;
where �; �0 are from equation (30), we have�ekk j ð1; 0Þ

�
¼ 2�k;

and so �ekk j ðt; 0Þ
�
¼ 2�kt for all t 2 R:

We are interested in model sets � coming from the cut-and-

project scheme [equation (28)]. In the context of equation

(28), the Fourier–Bohr expansion [equation (18)] assumes the

simpler form

f ðtÞ ¼ Fðt þ�Þ ¼ eFF�ðt; 0ÞfZ½�
Z½�


�
¼

P
k2Z½�
�

ak expð2�i2�ktÞ: ð35Þ

We shall use ak computed in the form

ak ¼ lim
R!1
ð1=RÞ

RR
0

expð�2�i2ktÞ f ðtÞ dt:

For future use note that�ekk j ð0; 1Þ
�
¼

aþ b�

2
;

aþ b�0

2

� ������0e11þ �0�0e��� �
¼ 2k0�0;�ekk j ð0; uÞ

�
¼ 2uk0�0: ð36Þ

5.3. The Fibonacci model set

The standard two-letter Fibonacci sequence is the fixed

point of the substitution a! ab, b! a: namely,

abaababa . . . :

With tile lengths � for a symbols and 1 for b symbols, and

starting at 0, we obtain the sequence of tiles that cover the

non-negative part of the real line. The left-hand ends of these

tiles,

0; �; �þ1; 2�þ1; 3�þ1; 3�þ2; 4�þ2; 4�þ3; 5�þ3; . . .

form an infinite sequence of points on the non-negative real

line. This set appears explicitly as the non-negative part of the

model set

� ¼ � �1; 1=�½ Þð Þ

arising from the cut-and-project scheme [equation (28)].4 �
decomposes as �a ¼ �ð½�1=�2; 1=�ÞÞ and �b ¼ �ð½�1;
�1=�2ÞÞ, which give the left-hand end points of the a and b

tiles, respectively.

A useful and commonly used way to visualize the distri-

bution of a and b points is to view them on the torus T after

embedding [equation (10)] of R in T. The fundamental cell

(see Fig. 3) with opposite edges identified is T. To see � itself

being formed, we start at ð0; 0Þ and trace out ðt; 0Þ, t 2 R, with

the usual rules for exiting and re-entering the fundamental

cell. We move continuously. Our moving point has three

‘whiskers’ attached to it.

a(1): a whisker of length 1=� facing vertically upwards;

a(2): a whisker of length 1=�2 facing down;

b(1): a whisker of length 1=� that faces down, but has an

initial gap of size 1=�2.

The rule is this. As our point moves along the line on the

fundamental cell, if the að1Þ whisker hits ð1; 1Þ [i.e. ð1; 1Þ is

close enough to get cut by this whisker], we get an a point of �.

If the að2Þ whisker hits the point ð�; �0Þ, we also get an a point

of �. If the bð1Þ whisker hits the point ð�; �0Þ, we get a b point.

Essentially the window, represented by the whiskers, is

carried along with the moving point, and exits and re-enters

the fundamental cell with the moving point.

The advantage of this point of view is that it allows us to

divide the fundamental cell into regions that deliver the a and

b points, and thus to see what our function f ðtÞ looks like on

the fundamental cell.

In Fig. 3 the vertical dotted lines are the key thing. Our

moving point moves to the right, and every time it crosses a

dotted vertical line we get a new point of �, thus starting a

new interval. We stay on that interval until the next crossing.

The a and b regions are indicated in Fig. 3.

5.4. Discretization

We now go in to the details of how to deal with the Fourier

analysis using discrete methods. Here we follow the six steps

outlined in x4.3.

Write eLL for gZ½�
Z½�
, so eLL ¼ Ze11þ Ze��. Let

C :¼ fue11þ ve�� : 0 � u; v< 1g

be a fundamental region for eLL. Its volume is equal to
ffiffiffi
5
p

.

Fix any N 2 Zþ. We want to create a lattice eLLN that is

a refinement of eLL. In x4.3 we took eLLN 	
eLL with ½eLLN : eLL
 ¼ N.

In our present situation we use the most obvious lattices,

namely ð1=NÞL. These actually have index N2, so there are

some slight notational differences between this section and

x4.3. Since NeLLN �
eLL, so eLLN � Q

e11þQe��.
LeteSS :¼ LN \ C, soeSS is a complete set of representatives of

LN mod L.

Together this completes Steps 1, 2 and 3 of x4.2.

To aid a better understanding of the approximations we also

introduce a fundamental region CN for LN , chosen so that

C ¼
S
~ss2 ~SS

essþ CN: ð37Þ
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Þ, which differs from � in the two
points coming from the ends of the interval ½�1; 1=�Þ. This is an example of a
pair of sets that map to the same place in T. This ambiguity shows up in an
interesting way later on (see x6.3).



For Step 4 we choose as our delimiting range in R an interval

½0;R
, where R is a positive real number taken so that ðR; 0Þ

taken modulo eLL is on the boundary of C. Following along the

path ðt; 0Þ, t 2 R>0, and wrapping around C as indicated in

Fig. 4, this amounts to stopping at some point R where the

path is just exiting C, so that we have an exact number of

passes of C. Thus the path ðt; 0Þ, 0 � t � R, involves an explicit

set of translates etti þ C, i ¼ 1; . . . ;M of C. LeteTT ¼ fett1; . . . ;ettMg.

Let f : R! C be any continuous local function with

respect to the model set � ¼ �ð½�1; 1=�ÞÞ, and leteFF : T! C

be its extension to a continuous function on T ¼ R2=eLL.

Generally we are interested in Fourier decomposition ofeFF and

along with it the corresponding decomposition of f . Thus we

wish to compute expressions likeR
T

eFFðxÞ exp
�
�2�iðekk j xÞ� d�TðxÞ:

Here eFFð�Þ exp
�
�2�iðekk j �Þ� is just some other continuous

function on T that is local with respect to �. Thus it suffices to

deal with some general continuous function eGG on T and its

restriction gðtÞ ¼ eGG�ðt; 0Þ
�

to the line ðR; 0ÞmodeLL.

Let

"N :¼ sup
i¼1;...;N2

sup
x2 ~ssiþCN

eGGðxÞ � eGGðessiÞ

��� ���:
Our first estimate isR

T

eGG d�T ’ ð
ffiffiffi
5
p
=N2Þ

PN2

i¼1

eGGðessiÞ:

Since vol CN ¼
ffiffiffi
5
p
=N2, the error in this is estimated by����� R

T

eGG d� � ð
ffiffiffi
5
p
=N2Þ

PN2

i¼1

eGGðessiÞ

�����
¼

�����XN
2

i¼1

Z
~ssiþC

N2

�eGGðxÞ � eGGðessiÞ
�

d�ðxÞ

�����
�
PN2

i¼1

R
~ssiþC

N2

"N d� ¼
PN2

i¼1

"Nvol CN2 ¼
ffiffiffi
5
p

"N; ð38Þ

i.e. the error in our approximation is bounded by
ffiffiffi
5
p
"N. In

practice LN and N would be chosen so as to provide a suitably

a priori assigned value of "N.

5.5. Restriction to f

In order to be useful, the computation must be restricted to

values of the function f , since this is all that one is given in

practice. We wish to use an approximation of the form

ð1=RÞ
RR
0

gðtÞ dt ¼ ð1=RÞ
RR
0

eGGðt; 0Þ dt ’
R
T

eGG d�T;

in accordance with equation (21).

In this section we indicate the geometry behind Step 5.

Again, it should be pointed out that in the final analysis much

of the detail that appears here need not appear at all in the

actual algorithm.

The path fðt; 0ÞL : 0 � t � Rg, wrapped around C, is divided

by C into segments l1; . . . ; lM.

Let b1 < b2 < . . . < bM be the projections onto internal

space of the boundary cutting points of fðt; 0Þ : 0 � t � Rg

(Fig. 5). Define

c0 ¼ �
0; c1 ¼

b1 þ b2

2
; . . . ; cM�1 ¼

bM�1 þ bM

2
; cM ¼ 1:

The strips Si formed by passing the interval ½ci�1; ciÞ in internal

space through C in the direction of the physical axis form a

partition of C. Through each strip in C runs a part li of our line

fðt; 0ÞL : 0 � t � Rg. The idea is to use the intervals ½ci�1; ciÞ as

windows and the line segments li as (part of) the physical space

for a model set construction based on the lattice eLLN (see Fig.

6). This will then produce the points on li that will be our data

points for the evaluation of the functions eGG and then g. In

other words, we are implicitly using the partial model sets

�eLNLN

ðSiÞ \ li.
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Figure 4
Ten crossings of C by the path fðt; 0ÞL : 0 � t � Rg are shown in the torus.
(Opposite sides of the parallelogram coincide.)

Figure 5
The projections b1; . . . ; bM into internal space of the boundary cutting
points of the path. The points c0; . . . ; cM mark the boundaries of the
smaller windows into which the original window ½�0; 1Þ is partitioned.



Let mðRÞ :¼ maxfjci � ci�1jg and

"0N :¼ sup
i

sup
ðx;vÞ;ðx;uÞ2Si

eGGðx; vÞ � eGGðx; uÞ
��� ���; i ¼ 1; . . . ;M:

Each essj 2
eSS lies in exactly one strip Si. Let ðpj; qjÞ be its

projection onto the line segment li. Then ðpj; qjÞ � ðuj; 0ÞL for

some uj 2 ½0;R
. Thus we obtain fðu1; 0Þ; . . . ; ðuN2 ; 0Þg on our

path fðt; 0ÞL : 0 � t � Rg (Fig. 6).

We have the estimate (38). Moreover,ffiffiffi
5
p

N2

XN2

i¼1

eGGðessiÞ ¼

ffiffiffi
5
p

N2

XN2

i¼1

�eGGðessiÞ �
eGGðpi; qiÞ

�
þ

ffiffiffi
5
p

N2

XN2

i¼1

gðuiÞ;

since eGGðpi; qiÞ ¼
eGG�ðui; 0Þ

�
¼ gðuiÞ:

Thus�����
ffiffiffi
5
p

N2

XN2

i¼1

eGGðessiÞ �

ffiffiffi
5
p

N2

XN2

i¼1

gðuiÞ

����� �
ffiffiffi
5
p

N2

XN2

i¼1

"0N ¼
ffiffiffi
5
p

"0N; ð39Þ

sinceessi and ðpi; qiÞ both have a second component in the same

interval ½ci�1; ciÞ.

Combining equations (38) and (39), we have�����
Z
T

eGG d� �

ffiffiffi
5
p

N2

XN2

i¼1

gðuiÞ

�����< ffiffiffi
5
p
ð"N þ "

0
NÞ: ð40Þ

This provides a method of estimating the integral
R
T
eGG d�

using only g on ½0;R
 along with well chosen points in the

interval. The two parameters N and R control the estimates.

In spite of the apparent complexity of strips, what is going

on is easy to implement. For each essi ¼ ðsi; s0iÞ there is a

translation vector ettj 2
eTT for which js0i þ t0jj is minimal. The

corresponding data point is then ui :¼ si þ tj. This is Step 5 of

x4.2.

6. Two explicit examples

6.1. Computation of Fourier coefficients

In this section we apply the methods outlined above to two

almost periodic functions f : R! R, both local with respect

to the model set � ¼ �ð½�1; 1=�ÞÞ of x5.3. The first is the

distance-to-the-nearest-neighbor function

f ðtÞ ¼ the distance of t to the nearest point of �: ð41Þ

This is a continuous and piecewise linear function that is local

with respect to �.

The second is the function

f : f ðxÞ ¼

(
1 if x is in a long interval

�1 if x is in a short interval;
ð42Þ

which is local, but only piecewise continuous with breaks

wherever x switches from a long to a short interval.

Graphs of these functions are shown (solid lines) in Figs. 7–

11 and 12–15, respectively (see also Tables 1–4).

Our objective is to see how well the approximations we

have discussed compare with the actual functions when the

calculations are performed with specific choices of data points.

We approximate each of the two functions by a finite

number of terms of its Fourier–Bohr expansion [equation

(18)], which in our setting here reads

f ðxÞ ¼
P

~kk2fZ½�
Z½�
�

ak exp
�
2�iðk j xÞ

�
; x 2 R: ð43Þ

For the two functions f chosen here, it is easy to determine the

corresponding functions ~FF on the torus T ¼ ðR� RÞ=eLL and

hence to compute the Fourier–Bohr coefficients ak exactly by

equation (19) (see x6.2). For the nearest-neighbor function

these are given explicitly in equation (50).

On the other hand, the approximation depends on

the choice of the refinement lattice eLLN, which shall here

always be of the form ð1=NÞeLL ¼ ð1=NÞgZ½�
Z½�
 (so the index

½eLLN : eLL
 is N2). This determines both the points that will

eventually be projected into our data points and also the

values of k that shall be included in approximating the

sum (43), namely a set eKK of ekk ¼ ðk; k0Þ 2gZ½�
Z½�
� chosen

as representatives of the group gZ½�
Z½�
�=NgZ½�
Z½�
� dual to the group�
ð1=NÞgZ½�
Z½�


�
=eLL. Our choice is to take ekk with jkj as small as

possible, so K consists of elements k 2 Z½�
, one for each

congruence class of Z½�
 modulo NZ½�
, chosen so that jkj is

minimal in its class. We denote by f exactðxÞ the finite series,

taken from equation (43), approximating f ðxÞ, x 2 R:

f exactðxÞ ¼
P
k2K

ak exp
�
2�iðk j xÞ

�
; x 2 R: ð44Þ

Next we replace the coefficients ak in f exactðxÞ by their

approximations

aint
k :¼ ð1=RÞ

RR
0

f ðxÞ exp
�
�2�iðk j xÞ

�
dx ð45Þ

following from equation (22), and denote the resulting func-

tion by f intðxÞ. We shall use various values of R, all of which
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Figure 6
The points essj lying in the strip Si formed by the window ½ci�1; ciÞ are
projected onto the segment li of the path fðt; 0ÞL : 0 � t � Rg producing
data points uj, shown here as small crosses.
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Figure 7
The solid line is the graph of f of equation (41). The dotted curve shows the f sum approximation and the dashed curve shows the f int approximation. Both
approximations were calculated using a total of N2 ¼ 49 lattice points in C and M ¼ 11 path passes in C, corresponding to an interval of integration
R ’ 23; 30. See x6.3 for an explanation of the misfit of approximations in the region ½��2; 0
.

Figure 8
The function f and approximants of equation (41) are drawn with the same conventions as in Fig. 7, but for refined parameters M ¼ 17, N2 ¼ 121 and
R ’ 37; 43.

Figure 9
The function f of equation (41) is plotted for parameters N2 ¼ 9 lattice points from C, M ¼ 10 passes of the fundamental domain and the corresponding
interval of integration given by R ’ 21; 64. The periodic approximation f cos is shown. The number of cosine terms used is n ¼ 50 and coefficients are
calculated by formula (48). Here the dotted curve corresponds to the f sum approximation, the dashed curve corresponds to the f exact approximation and
the thin line represents the f cos approximation.

Figure 10
Here we plot the same approximations as in Fig. 9, but the functions are now drawn on the interval ½200; 215
. Observe how the aperiodic approximants
continue to follow the graph of f while the periodic approximant now has no relation to it.
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Figure 11
The approximations are presented with the same conventions as in Fig. 9 but the functions are drawn in the interval ½�115;�100
.

Figure 12
The solid line is the graph of f of equation (42). The dotted and dashed curves correspond to the f sum and f int approximations. Both approximations were
calculated using a total of N2 ¼ 81 lattice points in C, M ¼ 17 passes of C and the corresponding interval of integration given by R ’ 37; 01.

Figure 13
The function f of equation (42) is drawn for parameters: N2 ¼ 49, M ¼ 11, R ’ 23; 30. The periodic approximation f cos is also shown as a thin line. The
number of cosine terms used is n ¼ 50 and coefficients were calculated by equation (48). Here the dotted curve corresponds to the f sum approximation
and the dashed curve corresponds to the f exact approximation.

Figure 14
Here we adduce the same approximations as in Fig. 13, but the functions are drawn in the interval ½200; 215
.



correspond to a set of complete passes across the fundamental

region, as illustrated in Fig. 5.

The integrals (45) are to be estimated by reducing them to

finite sums where the integrand is computed on the finite set of

data arising as projections fu1; . . . ; uN2g of the N2 points in C,

as explained in x4.3:

asum
k :¼ ð1=N2

Þ
PN2

j¼1

f ðujÞ exp
�
�2�iðk j ujÞ

�
: ð46Þ

The resulting approximation to f exactðxÞ is denoted f sumðxÞ.

This is the approximation that we have been working towards.

Written out in full it reads

f sumðxÞ¼
P
k2K

�
ð1=N2Þ

PN2

j¼1

f ðujÞ exp
�
�2�iðk j ujÞ

��
exp

�
2�iðk j xÞ

�
:

ð47Þ

It is computed out of data points in R, is a finite sum of

exponential functions whose frequencies come from the

Fourier module of f , and utilizes discrete groups arising out of

the periodic setting of the underlying cut-and-project scheme.

By its form, f sum is almost periodic and approximates the

function eFF everywhere on the real line as it lies wrapped

around the torus.

Thus we have four functions: f , f exact, f int and f sum, all

defined for all x 2 R. The three approximation functions

depend on the number M of passes of the real line going

through the fundamental region C (see xx5.4 and 5.5 for

details), and on the number N2 of lattice points ofeLLN found in

C. Each of them restricts the full summation of the Fourier–

Bohr expansion to the same finite set K of frequencies. They

differ because of the ways in which the Fourier–Bohr coeffi-

cients are obtained: they are exact in the first case (or at least

as exact as real computation on computers can be), are

derived from the integral approximation in the second, and

come from the finite sum approximation to the integral in the

third. The calculations and graphs shown in Figs. 7–15 allow

one to compare these functions. The exact coefficients and

their approximations by integrals are sufficiently close as to

make little difference to the graphs, so the figures are

restricted to comparing f , f int and f sum.

By way of comparison, there is one further Fourier

approximant of the type that we obtain by periodically

extending f from its values on a fixed finite interval I of R to

the entire space R. Thus we introduce

f cos
ðxÞ ¼

Pn
k¼0

ak cosðk�x=2Þ; where

ak ¼ ð1=2Þ
R2
0

f ðxÞ cosðk�x=2Þ dx:

ð48Þ

Needless to say, f cos cannot be expected to have much rela-

tionship to f outside I, and it does not. In fact, f cos does not

appear to be a good choice even on the limited domain I.
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Figure 15
The approximations are drawn with the same conventions as on Fig. 13, but in the interval ½�115;�100
.

Table 2
Comparison of the values of the function f of equation (41) and its
approximants f exact, f int, f sum and f cos (see Fig. 9).

xi f ðxiÞ f exactðxiÞ f intðxiÞ f sumðxiÞ f cosðxiÞ

�100 0.8065 0.6916 0.6965 0.7728 0.1859
�50 0.4033 0.4229 0.4208 0.4562 0.3690
�15 0.3262 0.2555 0.2522 0.1461 0.4912
�3� 5� 0 0.0577 0.0584 0.1378 0.5365
0 0 0.0658 0.0670 0.1165 0.1859
� 0 0.0797 0.0788 0.0946 0.1858
0:25þ � 0.2500 0.2060 0.2049 0.1995 0.3065
0:5þ � 0.5000 0.3318 0.3313 0.3416 0.3138
1þ � 0 0.1659 0.1649 0.1115 0.3000
1þ 1:25� 0.4045 0.3325 0.3287 0.1467 0.5022
1þ 2:5� 0.8090 0.6562 0.6609 0.6949 0.4681
1þ 2:75� 0.4045 0.3119 0.3152 0.2659 0.2659
50 0.4033 0.3265 0.3229 0.1209 0.3690
100 0.1885 0.3006 0.3004 0.2282 0.1859
500 0.4396 0.4669 0.4651 0.5364 0.1859

Table 1
Comparison of the calculated coefficients ak in the approximations f exact,
f int and f sum based on the parameters of Fig. 9.

k aexact
k aint

k asum
k

� 1
2�

1
2 � �0.1065 � 0.0367i �0.1065 � 0.0371i �0.1086 � 0.0581i

� 1
2 0.0243 + 0.0287i 0.0236 + 0.0292i 0.0269 + 0.0711i

� 1
2þ

1
2 � 0.0026 + 0.0153i 0.0035 + 0.0155i 0.0233 � 0.0332i

� 1
2 � �0.0683 + 0.0407i �0.0680 + 0.0412i �0.0517 + 0.0542i

0 0.3618 0.3618 0.3367
1
2 � �0.0683 � 0.0407i �0.0680 � 0.0412i �0.0517 � 0.0542i
1
2�

1
2 � 0.0026 � 0.0153i 0.0035 � 0.0155i 0.0233 + 0.0332i

1
2 0.0243 � 0.0287i 0.0236 � 0.0292i 0.0269 � 0.0711i
1
2þ

1
2 � �0.1065 + 0.0367i �0.1065 + 0.0371i �0.1086 + 0.0581i



6.2. Computing the exact Fourier–Bohr coefficients

It may be of interest to indicate how we computed the exact

Fourier–Bohr coefficients. We can reorganize Fig. 3, trans-

lating the a and b regions into single blocks (Fig. 16), a

procedure that is familiar from the Klotz construction (see x7)

often used in studying cut-and-project sets (Kramer, 1987).

It is then straightforward to understand the corresponding

function eFF on the two-dimensional torus, i.e. a genuinely

periodic function for which f ðtÞ ¼ eFFðt; 0Þ mod gZ½�
Z½�
.
Furthermore, it is easy to compute the ‘exact’ Fourier

coefficients of eFF. Let ekk ¼ ae!!1 þ be!!2 2
gZ½�
Z½�
�, where a; b 2 Z.

Then

�ekk j ðx; yÞ
�
¼ x

�ekk j ð1; 0Þ
�
þ y

�ekk j ð0; 1Þ
�
¼ 2xk�þ 2yk0�0;

where

k ¼ ðaþ b�Þ=2; k0 ¼ ðaþ b�0Þ=2:

The Fourier coefficient forekk is

ak ¼
R
T

eFFðwÞ exp
�
�2�iðekk j wÞ� dw

¼
R1
0

R1
0

eFFðu; vÞ exp
�
�2�iðekk j ue11þ ve�� Þ� du dv: ð49Þ

Writing

ue11þ ve�� ¼ ðuþ v�; uþ v�0Þ ¼: ðx; yÞ;

we have

ðekk j ue11þ ve�� Þ ¼ 2kx�þ 2k0y�0:

Making the change from the variables u and v to x and y, and

using the definition of eFF, we obtain

ak ¼
1ffiffiffi
5
p

Z0

�1=�

Z0

�1

1

2
� xþ

1

2

���� ����� �
exp

�
�4�iðkx�þ k0y�0Þ

�
dx dy

þ
1ffiffiffi
5
p

Z1=�2

�1=�

Z�
0

�

2
� x�

�

2

��� ���	 

exp

�
�4�iðkx�þ k0y�0Þ

�
dx dy:

ð50Þ

Note that the factor 1=
ffiffiffi
5
p

comes from x ¼ uþ v�,

y ¼ uþ v�0.

1 �
1 �0

���� ���� ¼ �0 � � ¼ � ffiffiffi
5
p
:

6.3. Shadows of singularities

Inspection of the aperiodic approximations shows that they

are remarkably faithful to the originals. However, there is

apparently a strange fuzziness in the approximation in the

interval ½��2; 0
. The explanation for this is quite interesting

and shows that the approximation method we use here is

sensitive to subtle qualities of the aperiodicity.
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Figure 16
The a and b regions of Fig. 3 are reorganized here into two rectangles
(heavy lines). The function eFF on T arising from the local function (41) is
supported on these two rectangles. It is constant on vertical lines. Along
the horizontal axis, on the b rectangle the function values start at 0,
increase linearly to 1

2 at the midpoint of the rectangle and then linearly
decrease to 0 again. Similarly on the a rectangle they increase to �=2 and
then return to 0.

Table 3
Comparison of the calculated coefficients ak in the approximations f exact,
f int and f sum based on the parameters N2 = 9 and M = 10.

k aexact
k aint

k asum
k

� 1
2�

1
2 � 0.1930 + 0.0094i 0.0228 + 0.0079i 0.1672 + 0.0576i

� 1
2 0.2217 + 0.4063i 0.02971 + 0.0360i 0.2204 + 0.2603i

� 1
2þ

1
2 � �0.0660 + 0.1738i 0.00384 + 0.0243i 0.0292 + 0.1744i

� 1
2 � �0.1041 + 0.2138i �0.0399 + 0.0240i �0.2931 + 0.1744i

0 0.5556 0.0608 0.4472
1
2 � �0.1041 � 0.2138i �0.0399 � 0.0240i �0.2931 � 0.1744i
1
2�

1
2 � �0.0660 � 0.1738i 0.0038 � 0.0243i 0.0292 � 0.1744i

1
2 0.2217 � 0.4063i 0.0297 � 0.0360i 0.2204 � 0.2603i
1
2þ

1
2 � 0.1903 � 0.0094i 0.0228 � 0.0079i 0.1672 � 0.0576i

Table 4
Comparison of the values of the function f of equation (42) and its
approximants f exact, f int, f sum and f cos.

xi f ðxiÞ f exactðxiÞ f intðxiÞ f sumðxiÞ f cosðxiÞ

�100 1 1.0960 1.0796 1.1907 0.8024
�50 1 1.0690 1.0628 0.6269 �0.1948
�15 1 1.1020 1.1637 1.1570 0.8162
�3� 5� 1 0.1092 0.0963 0.3515 0.8093
0 1 0.5331 0.5268 1.5952 0.8024
� �1 �0.0271 �0.0291 0.7757 0.3036
0:25þ � �1 �1.2750 �1.2957 �1.3115 �0.1820
0:5þ � �1 �0.7919 �0.8123 �0.7404 �0.1884
1þ � 1 0.0704 0.0971 �0.0128 0.7910
1þ 1:25� 1 0.9261 0.9625 1.1215 0.8005
1þ 2:5� 1 1.1233 1.1382 1.0246 0.7991
1þ 2:75� 1 0.9577 0.9519 1.2470 0.7826
50 1 0.9241 0.9374 1.1735 �0.1948
100 �1 �1.2440 �1.2652 �1.5375 0.8024
500 1 1.0950 1.0639 0.9970 0.8024



The particular Fibonacci set that we have used in our

example is singular, that is to say, it is one at which the torus

parameterization is not 1–1. As pointed out in footnote 4, � is

but one of two distinct sets in Xð�Þ that map to the same point

on the torus T under the torus map. The other differs from �
only in that it contains f��g but not f�1g. The Fourier analysis

takes place on T and treats these two sets equally. However,

the nearest-neighbor functions of the two sets are different.

This is a difference that is immaterial toeFF, which our function

f sum is approximating, but which the original function F can

see. What we see is the Fourier analysis hedging between the

two scenarios.

Further refinements of the lattice will never improve the

situation in this interval. However, if we had used an element

of Xð�Þ at which the torus map was 1–1 [and this is the case

with probabilistic certainty if one chooses randomly from

Xð�Þ] then this phenomenon would not occur and the

approximation would be uniformly valid over the entire space.

All one need do is to shift the window so that its end points do

not lie in the set Z½�
, e.g. 1
2þ ½�1; 1=�
.

7. Final comments

We should point out that there is considerable scope for

adapting the scenario sketched out here. It is possible to

arrange things so that they are related to tilings. One elegant

tiling method is the Klotz construction (Kramer, 1987; Kramer

& Schlottmann, 1989). One begins with the decomposition

into Voronoi cells of the latticeeLL in Rd
� Rd and along with it

the corresponding dual cell decomposition into Delone cells.

For each pair of P;Q consisting of intersecting d-dimensional

faces P and Q from a Voronoi cell and a Delone cell,

respectively, we form the Klotz Pjj �Q? in Rd
� Rd. The set

of these Klötze form a tiling of Rd
� Rd. Furthermore, the

intersection of ðRd; 0Þ with this tiling produces a tiling of

physical space. (If one chooses instead to perform the

projections the other way around, one gets a different tiling.)

Several of these Klötze can be combined to form a funda-

mental region forRd
� R

d, as we see in Fig. 16, and this type of

choice should lead to computational methods that are adapted

to these tilings. For instance, the region A of integration might

well be chosen as the union of a finite number of tiles. For

more on determining Voronoi and Delone cells in the context

of high symmetry, see Moody & Patera (1995).

The method advocated here is based on the idea of local

functions, the extension of them into the context of compact

Abelian groups, and the discretization of the resulting Fourier

analysis by the use of finite groups. In the one-dimensional

setting that was explored in detail here, the only symmetries

involved arise from translational symmetry (which is at the

base of the almost periodicity). In higher dimensions, espe-

cially those of interest to the quasicrystal community, deca-

gonal, icosahedral or other symmetries appear. In these cases

there are a number of ways of utilizing the symmetry to greatly

improve the efficiency of the computation, in the same spirit as

Moody & Patera (1984). As we have pointed out, the

preparations required for this depend largely on the cut-and-

project scheme and not so much on the actual model set

involved. Fortunately the cut-and-project schemes for these

settings are essentially canonical and their strong algebraic

nature makes this program quite feasible.

Finally, although we have not spelled it out here, the way in

which finite groups and their duals are used here makes the

process amenable to the technique of the fast Fourier trans-

form. Details will appear later.
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